National Aeronautics and Space Administration

NASA/TM-2016-218221

Marshall Space Flight Center Research and Technology Report 2015

Report extract, focused on ai-one™ solution project

NASA/TM-2016-218221

Marshall Space Flight Center Research and Technology Report 2015

A.S. Keys, M.L. Tinker, A.D. Sivak, and H.C. Morris, Compilers Marshall Space Flight Center, Huntsville, Alabama

Acknowledgments

The points of contact and coordinator at Marshall Space Flight Center (MSFC) for this Technical Memorandum (TM) are Mike Tinker (256–544–4973) and Heather Morris. The MSFC Office of Center Chief Technologist recognizes Troy Farsoun, Vicki Hocutt, and Mary Vaughn of the MSFC Scientific and Technical Information Group for assisting in the development of this report. The Center Chief Technologist, Andrew Keys, Deputy Chief Technologist, Mike Tinker, Technologist, Amy Sivak, and Technologist, Heather Morris, provided the support, knowledge, insight, and decisions needed for compilation of this TM.

TRADEMARKS

Trade names and trademarks are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

For additional copies of this report contact:

NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681–2199, USA 757–864–9658

This report is available in electronic form at <http://www.sti.nasa.gov>

FOREWORD

Marshall Space Flight Center is essential to human space exploration, and exploration propels technological advancements. As we solve the challenges of expanding human presence deeper into the solar system than ever before, we advance technology on Earth, further scientific knowledge and discovery, create new economic opportunities, and continue to lead the world in space exploration.

The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds.

Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe–instruments that will provide valuable information as we seek to explore the outer planets and search for life.

While each project in this report seeks to advance technology and challenge our way of thinking, it is important to recognize the immense variety of work being done in support of our mission. This report highlights Marshall's reputation for solving complex problems and shows the progress that has been made this past year. These scientists, researchers, and technologists are enabling technology that will facilitate NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery for years to come.

I hope you enjoy reviewing this report. It has been an exciting year and has set the stage for even more progress in 2016.

Todd A. May V Center Director Marshall Space Flight Center

INTRODUCTION

I am honored to present the Marshall Space Flight Center Research and Technology Report for 2015. Our immensely talented workforce is pursuing a wide variety of research and technology efforts, and this document showcases their impressive work. From early stage innovations developed in the Center Innovation Fund program to advanced technologies that were investigated to enable future Space Launch System capabilities, the efforts detailed in this report should advance the current state of technology such that future NASA missions are enabled.

Marshall's technologists achieved significant accomplishments in projects funded by Human Exploration and Operations Mission Directorate (HEOMD), including the Advanced Exploration Systems Program and Space Launch System Advanced Development. The HEOMD work was managed by the Space Launch Systems Office and the Flight Programs and Partnerships Office.

Outstanding progress was also achieved in technology projects funded by Space Technology Mission Directorate (STMD), including efforts in

the Technology Demonstration Missions Program, Centennial Challenges Program, Game Changing Development, Center Innovation Fund, Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR), and Small Spacecraft Technology Program. These efforts were managed by the Science and Technology Office and the Flight Programs and Partnerships Office.

Technology efforts at MSFC funded by the Science Mission Directorate (SMD) included work in the Astrophysics Division and the Planetary Science Division's Mars Exploration Program. This work was managed by the Science and Technology Office.

Finally, MSFC Center Management and Operations funded efforts such as the Technology Investment Program, Center discretionary investments, and Dual-Use Technology Cooperative Agreement Notice. This work was managed by the Office of Strategic Analysis and Communications and the Center Strategic Development Steering Group.

The innovations described within this report may serve to not only enhance and enable NASA's near-term programs and projects, but could also provide the solutions required for future Mars missions, human and robotic exploration of other solar system bodies, and destinations beyond. I trust that you will enjoy reviewing the Marshall research and technology accomplishments of 2015.

Indrew S. Keys

Andrew Keys Center Chief Technologist Marshall Space Flight Center

TABLE OF CONTENTS

HUMAN EXPLORATION AND OPERATIONS MISSION DIRECTORATE (HEOMD) 1					
Advanced Exploration Systems (AES)	3				
In-Space Manufacturing Project	4				
Nuclear Thermal Propulsion	6				
Autonomous Mission Operations EXPRESS	8				
1	10				
Lander Technologies	12				
•	14				
	16				
	18				
	20				
	22				
Space Launch System Advanced Development (SLS AD)	25				
Additively Manufactured Propellant Ducts and Manifold	26				
Advanced Manufacturing of Lightweight Carbon-Carbon Nozzle Extensions for Upper Stage Engines	28				
Computed Tomography Sensitivity Verification for Selective Laser Melting Space Launch	28 29				
	30				
	32				
Hot-Fire Test of Liquid Oxygen/Hydrogen Selective Laser Melting Injector Applicable	34				
Testing of Selective Laser Melting Turbomachinery Applicable	2.				
to the Exploration Upper Stage	36				
	37				
	38				
1	40				
	42				
	43				
	44				
	46				
Advanced Booster High-Performance Solid Propellant and Composite					
	48				
	50				

Report extract, focused on ai-oneTM solution project on page 198

TABLE OF CONTENTS (Continued)

Space Launch System Academia Contracts/Grants (SLS Academia)	53
Academia Contracts/Grants	54
High Electrical Energy Density Devices for Aerospace Applications <i>Auburn University</i>	56
Challenges Towards Improved Friction Stir Welds Using Online Sensing	<i>5</i> 7
of Weld Quality Louisiana State University	57
A New Modeling Approach for Rotating Cavitation Instabilities	50
in Rocket Engine Turbopumps <i>Massachusetts Institute of Technology</i>	58
Low Dissipation and High Order Unstructured Computational Fluid Dynamics	
Algorithms to Complement the Use of Hybrid Reynolds-Averaged Navier Stokes/Large	- 0
Eddy Simulation Algorithms Mississippi State University	59
Next Generation Simulation Infrastructure for Large-Scale Multicore Architectures	
Mississippi State University	60
Development of Subcritical Atomization Models in the Loci Framework	
for Liquid Rocket Injectors University of Florida	61
Determination of Heat Transfer Coefficients for Two-Phase Flows of Cryogenic	
Propellants During Line Chilldown and Fluid Transport University of Florida	62
Validation of Supersonic Film Cooling Numerical Simulations Using Detailed	
Measurement and Novel Diagnostics University of Maryland	63
Advanced Large Eddy Simulation and Laser Diagnostics to Model Transient	
Combustion-Dynamical Processes in Rocket Engines: Prediction of Flame Stabilization	
and Combustion Instabilities University of Michigan and Stanford University	64
Characterization of Aluminum/Alumina/Carbon Interactions Under Simulated	
Rocket Motor Conditions Pennsylvania State University	66
Acoustic Emission-Based Health Monitoring of Space Launch System Vehicles	
University of Utah	68
SCIENCE MISSION DIRECTORATE (SMD)	71
Mars Ascent Vehicle	72
Advanced Ultraviolet, Optical, and Infrared (UVOIR) Mirror Technology Development for Very Large Space Telescopes	74
for very Large space relescopes	/4
SPACE TECHNOLOGY MISSION DIRECTORATE (STMD)	77
Technology Demonstration Missions (TDM)	79
Technology Demonstration Missions Summary	80
Evolvable Cryogenic Project Portfolio	82
Composites for Exploration Upper Stage	84
composites for Exploration opper ombe	01

Report extract, focused on ai-oneTM solution project on page 198

TABLE OF CONTENTS (Continued)

Centennial Challenges Program (CCP)	87
Centennial Challenges	88
Game Changing Development (GCD)	91
Fast Light Optical Gyroscopes	92
Adjustable Grazing-Incidence X-ray Optics	
Multi-spacecraft Autonomous Positioning System	96
NanoLaunch	
Magnetogram Forecast: An All-Clear Space-Weather Forecasting System	100
Programmable Ultra-Lightweight System Adaptable Radio	102
Propulsion Descent Technologies	104
Materials Genome Initiative	106
Low Cost, Upper Stage-Class Propulsion	108
Additive Construction With Mobile Emplacement	
Microelectrospray Thrusters	112
Small Business Innovation Research (SBIR)	115
Small Business Innovation Research and Small Business Technology Transfer Programs	116
Small Spacecraft Technology Program (SSTP)	119
Iodine Satellite	120
Center Innovation Fund (CIF)	123
Flexible Hybrid Battery/Pseudocapacitor Using Carbon Nanotube Electrodes High-Fidelity Design Tools and a New Hydrogen Containment Process	124
for Nuclear Thermal Engine Ground Testing	126
Novel Aerogel-Based Catalysts for Spacecraft Life Support Application	
Deployable Nozzle Extension	
Novel Metrology Concept for High-Resolution Grazing Incidence Optics	
Correlated Electromagnetic Levitation Actuator	134
Flexible Electrostatic Tools for Capture and Handling	136
Superior Epoxies for Cryogenic Composite Tank Fabrication	
Radar Hazard Identification for Planetary Landers	140
Linear Transformer Driver Development	142
Second Generation QUATARA Flight Computer	144

TABLE OF CONTENTS (Continued)

MARSHALL SPACE FLIGHT CENTER (MSFC)/CENTER MANAGEMENT

AND OPERATIONS (CMO)	. 147
Technology Investment Program (TIP)	. 149
Common Data System Architecture for Earth and Space Science Instruments	. 150
Lightweight Integrated Solar Array and Transceivers	
High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner	
for Advanced Rocket Engines	. 154
Oxygen-Rich Material Testing	
Radio Frequency Identification for Automated Inventory Management	. 158
Formation Flying for Satellites and Unmanned Aerial Vehicles	. 160
Solar Sail Attitude Control Capability	. 162
CubeSat Demonstration Mission	. 164
Center Strategic Development Steering Group (CSDSG)	. 167
Chromospheric Lyman-Alpha Spectropolarimeter	. 168
International Space Station Agricultural Camera Reutilization for Earth Observation	
Direct Fabrication of Grazing Incidence Optics	
Regenerable Catalyst From In Situ Resources for Life Support Using Ionic Liquids	
X-ray Surveyor Strawman Payload Definition	
GreenSat	
Oxygen-Rich Assessment of Mondaloy Alloy	
Marshall Grazing Incidence X-ray Spectrometer	
Methane Pump Test	
Dual-Use Technology Cooperative Agreement Notice (CAN)	. 187
Optimization of Ultracapacitors	. 188
Low-Cost Plasma Micropropulsion Using 3D Printing and Off-the-Shelf Components	
Liquid Oxygen Expansion Cycle—A Dual-Cooled Expander Cycle Engine	
Using Hydrogen and Oxygen	. 192
Enabling Fast-Responding Pressure-Sensitive Paint Systems in Blowdown Wind Tunnels	
Multi-Mode Micropropulsion for Small Spacecraft	
Topic Mapping	
Printing Outside the Box: Additive Manufacturing Processes for Fabrication	
of Large Aerospace Structures	. 200
Improving the Interlaminar Shear Strength of Out-of-Autocave Composites	

Human Exploration and Operations Mission Directorate

Human Exploration and Operations Mission Directorate Advanced Exploration Systems

Topic Mapping

Project Manager(s)

Mark Rogers/ED04 (256) 544–6969

Pat Hunt/ED04 (256) 544-2297

Gregory Funaro/ED04 (256) 544–3747

Thomas Marsh/ai-one, inc. (858) 531–0674

Jeremy Toor/ISC Consulting Group (520) 508–8501

Sponsoring Program(s)

Marshall Space Flight Center/Center Management and Operations Dual-Use Technology Cooperative Agreement Notice

Project Description

The Advanced Concepts Office (ACO) performs conceptual design and analysis on many far-reaching missions, which requires significant technology development. The intent is to help guide NASA's technology development programs and to quantify through analysis the benefits of those technologies. The Agency's programs and projects, by their very nature, frequently require the development and infusion of new technological advances to meet mission goals, objectives, and resulting requirements. Figure 1 depicts the relationship between architectural studies and technology assessments.

Key to the technology assessment process is an understanding of program and Agency goals, technology capabilities, the collection of the technology data, and the actual technology assessments. The process requires significant input in the form of interviews with technologists throughout the industry/government/academia. Technology assessments also require the input from multiple discipline analysts.

Figure 1: Relationship between concepts, architectural studies, and technology assessments.

The technology assessment process is laborious and time intensive due to the nature of assembling and obtaining input from multiple discipline experts. ACO is attempting to improve the process by using state-of-the-art technology in computer text and content analytics. ACO is collaborating with two leading experts in this field: ai-oneTM and ISC Consulting Group.

ai-one is a recognized Who's Who in text analytics technology, which will enable ACO to obtain information from almost any digital source, in any language, regardless of its structure (or lack of structure). ISC Consulting Group has experience working with the aione technology to obtain and classify information for the United States Army Intelligence Center.

ACO is testing the ai-one technology by performing a technology assessment of wireless sensors. ACO collected data on wireless sensors from the NASA Technical Reports Service repository, which returned 230 documents, which amounts to approximately 10,000 paragraphs, or 3,000 pages, of technical information from all NASA Centers from the years 2000–2015.

With the help of the ai-one technology and support from ISC Consulting Group, ACO created 45 agents to represent various avionics system designs. This was done not through programming, but by providing each agent a few paragraphs describing each avionic system. The 10,000 paragraphs were then evaluated by each agent and scored on how well the wireless sensor paragraphs matched the capabilities described by the avionics system. That amounts to 450,000 assessments.

	REPOR	Form Approved OMB No. 0704-0188						
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operation and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.								
1. REPORT DATE	(<i>DD-MM-YYYY</i>) -04-2016		2. REPORT TYPE Technical Memo	orandum	3. DATES COVERED (From - To) October 2014–September 2015			
4. TITLE AND SUE					5a. CONTRACT NUMBER			
Marshall Space Flight Center Research and Technology Report 2015					5b. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)					5d. PROJECT NUMBER			
A.S. Keys,	, M.L. Tinker,	pilers	5e. TASK NUMBER					
					5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) George C. Marshall Space Flight Center Huntsville, AL 35812					8. PERFORMING ORGANIZATION REPORT NUMBER M-1411			
9. SPONSORING/		NCY NAME(S) AND A	ADDRESS(ES)		10. SPONSORING/MONITOR'S ACRONYM(S)			
	eronautics an n, DC 20546	nd Space Adm 5–0001	inistration		NASA 11. sponsoring/monitoring report number NASA/TM — 2016–218221			
12. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified-Unlimited Subject Category 12 Availability: NASA STI Information Desk (757–864–9658)								
13. SUPPLEMENT	ARY NOTES							
Prepared by	y the Office of	of the Directo	or, Center Chief Technol	logist				
14. ABSTRACT								
Many of NASA's missions would not be possible if it were not for the investments made in research advance- ments and technology development efforts. The technologies developed at Marshall Space Flight Center con- tribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery.								
15. SUBJECT TERMS								
MSFC Research and Technology Report 2015, engineering, science, technology								
	ASSIFICATION OF: b. ABSTRACT	c. THIS PAGE	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON STI Help Desk at email: help@sti.nasa.gov			
a. REPORT U	U	U U	UU	222	19b. TELEPHONE NUMBER (Include area code) STI Help Desk at: 757–864–9658			

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18

National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, AL 35812 www.nasa.gov/marshall

....

Atlantis

TIM

Π

2

1.11

www.nasa.gov