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Abstract—The complex and multidisciplinary nature of space
systems and mission architectures is especially evident in early
stage of design and architecting, where systems stakeholders
have to keep into account all the aspects of a project, including
alternatives, cost, risk, and schedule and evaluate various poten-
tially conflicting metrics with a high level of uncertainty. Though
aerospace engineering is a relatively young discipline, stakehold-
ers in the field can rely on a vast body of knowledge and good
practices for space systems design and architecting of space
missions. These guidelines have been identified and refined
over the years. However, the increase in size and complexity of
applications in the aerospace discipline highlighted some gaps
in this approach: first, the amount of available information is
now very large and originates from multiple sources, often with
diverse representations, and useful data for trade space analysis
or analysis of all potential alternatives can be easily overlooked;
second, the variety and complexity of the systems involved and
of the different domains to be kept into account can generate
unexpected interactions that cannot be easily identified; third,
continuous advancements in the field of aerospace resulted in the
development of new approaches and methodologies, for which a
common knowledge database is not existing yet, thus requiring
substantial effort upfront. To address these gaps and support
both decision making in early stage of space systems design
and increased automation in extraction of necessary data to
feed working groups and analytical methodologies, we propose
the training and use of Artificial Intelligence agents. These
agents can be trained to recognize not only information coming
from standardized representations, for example Model Based
Systems Engineering diagrams, but also descriptions of systems
and functionalities in plain English. This capability allows each
agent to quantify the relevance of publications and documents
to the query for which it is trained. At the same time, each
agent can recognize potentially useful information in documents
which are only loosely connected to the systems or functionalities
on which the agent has been trained, and which would possibly
be overlooked in a traditional literature review. The search for
pertinent sources can be further refined using keywords, that let
the user specify more details about the systems or functionality
of interest, based on the intended use of the data. In this work
we illustrate the use of Artificial Intelligent agents to sort space
habitat subsystems into NASA Technology Roadmaps categories
and to identify relevant sources of data for these subsystems. We
demonstrate how the agents can support the retrieval of complex
information required to feed existing System-of-Systems ana-
lytic tools and discuss challenges of this approach and future
steps.
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1. INTRODUCTION

Architecting a complex space mission involves various multi-
disciplinary decisions variables [1] and variations along any
of these decision variables results in a distinct architecture
[2], where the system roles and their interactions with other



systems could vary drastically and cause substantial fluctua-
tions in the behavior of the systems and the outcome of the
mission. This makes space systems design a typical System-
of-Systems (SoS) problem. For space missions, given the ex-
tensive design space and a large number of SoS architectures,
it becomes impractical to employ engineering judgment alone
to identify the common features of different well performing
architectures and therefore to take decisions well-supported
by quantitative analysis. The volume, veracity and velocity
of research exarcebates the engineering challenge in an area
where the stakes could not be higher.

In past applications, our team used a suite of tools to address
SoS aspects of space systems architecture [3], [4], [S]. The
suite of tools, called SoS Analytic Work Bench (AWB) and
described in section 2, has been used in a variety of research
sectors, including Cybersecurity [6] and Global Navigation
Satellites Systems [7]. However, collaboration with Subject
Matter Experts (SME) from NASA provided a useful testbed
for analysis of space mission which resulted in substantial
improvement of the usefulness and usability of the AWB [8].
Past improvement focused on the utilization of Model-Based
Systems Engineering (MBSE) representations to facilitate
input and output processes, and on support to SME in the
phase of modeling the systems behavior through tools in the
AWB. However, due to the size and complexity of space
system design and space mission architectures and to the
relative novelty of the tools in the AWB, the data collection
to gather the necessary information for the AWB tools is still
a bottleneck in the process.

To address this problem and support the data mining re-
quirement, we propose the implementation and utilization
of Artificial Intelligence (AI) agents to power a specialized
space architecture database. These agents, once trained on
case studies, can navigate repositories of documents and
publications to find the necessary data to run SoS analysis
with tools in the AWB. Figure 1 shows the various parts of
this research application
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Figure 1. Combined application of Artificial Intelligence
and SoS Analytic Work Bench. Based on case studies, with
possible information in MBSE format, the Al agents build a

database that feeds tools in the AWB for SoS analysis.
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Though SMEs are currently still heavily involved in the
process of selecting the appropriate sources and extracting
the necessary information, the use of Al agents not only
accelerates the process, but can also identify valuable sources
that have only a loose connection with the functionality or the
system under study, and would therefore likely be overlooked
without the support of the agents. The flexible design of
the Al agents accommodates training information provided
by the user in different formats, including plain English
description, text examples and keywords and is an important
step towards increased automation of the SoS analysis and
synthesis process. To demonstrate the combined use of Al
agents and AWB tools, this paper focuses on the analysis of

the habitation portion of NASA Lunar Gateway.

2. SYSTEM-OF-SYSTEMS ANALYSIS AND
SYNTHESIS: ANALYTIC WORK BENCH
AND PREVIOUS STEPS

As mentioned in section 1, the collection of systems that con-
stitute a SoS can exhibit traits of operational and managerial
independence, geographic distribution, emergent behavior,
and evolutionary development [9], [10]. Due to their very
nature, SoS cannot always be analyzed with conventional
Systems Engineering methodology. Research in the SoS field
at Purdue University addressed multiple aspects of SoS, in
particular the dynamic behavior due to the interactions among
constituent systems. The result was the creation of an Ana-
lytic Work Bench (AWB), developed within research projects
of the Systems Engineering Research Center (SERC) to meet
the needs of the US Department of Defense (DoD) for new
methodologies to be used for analysis and synthesis of SoS
architectures [11]. The AWB is a suite of methods and tools
that can be used to achieve a top-level systemic assessment
touching different aspects of SoS engineering [12]. The suite
includes some tools that can assess the developmental risks
and uncertainty in time and resources, and policy contextual
questions [13], [14] and other tools and methodologies that
provide information on the operational aspects of complex
architectures [15], [16]. In general, the tools in the AWB
are oriented to the simulation and analysis of SoS, with
the goal of providing holistic assessment of the complex
architectures associated with SoS problems. Results of this
assessment take the form of metrics that quantify properties
of the SoS as a whole, accounting for the interactions between
the systems and possible emergent behavior due to these
interactions. The research presented in this paper focused
on the support provided by Al agents to the retrieval of
useful information for two methods in the AWB: Systems
Developmental Dependency Analysis (SDDA) and Systems
Operational Dependency Analysis (SODA).

Systems Operational Dependency Analysis

SODA methodology, developed in part based on Functional
Dependency Network Analysis [17], [18], addresses the
operational domain of a SoS, by providing analysis of the
impact of dependencies between constituent systems on the
propagation of the effect of disruptions. In SODA, a para-
metric model of system behavior is combined with a network
representation for the system architecture. Figure 2 shows
an example of this representation for the high-level systems
of a Lunar Gateway habitation module, where the nodes are
systems within the architecture, and the edges are operational
dependencies between the systems.

In SODA, a small set of parameters is used to produce a sim-
ple model of the dependencies between each system. These
parameters represent aspects of the dependency of the oper-
ability of a system on the operability of another systems [16].
The Strength of Dependency (SOD) represents a linearized
operational dependency between systems in the case of small
disruptions. The Criticality of Dependency (COD) represents
the loss of operability due to major disruptions. The Impact
of Dependency (I0D) models the boundary between the small
disruption regime and the major disruption regime. Figure 3
shows the SODA piecewise linear model of the dependency
between two systems. Based on the parameters of the model,
SODA can quantify the cascading effect of disruptions in
the architecture and constitutes a quantitative method of risk
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Figure 2. Operational dependency network for a habitation
module.

analysis which can be used to expand the traditional risk
matrix. The algorithm can also model partial failures, both
deterministic and stochastic, and multiple paths of propa-
gation within the model. SODA thus provides early-stage
feedback for the architecture’s design, reducing the amount of
simulation and other verification methods required to ensure
mission feasibility and to identify criticalities and areas of
potential emergent behavior.
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Figure 3. SODA piecewise linear model of dependency of
the operability of system j on the operability of system i.

Systems Developmental Dependency Analysis

Sister to SODA, but applied to the developmental domain,
SDDA provides a parametric model of the interactions be-
tween constituent systems of a SoS for what concerns devel-
opment and schedule. The Strength of Dependency (SOD)
in SDDA model evaluates the fraction of development time
of a system that is dependent on inputs by other systems.
With this parameters, SDDA can model partial developmental
dependencies and partial parallel development. The model
also account for the punctuality of a system development, that
is how much the system is following the expected schedule.
The Criticality of Dependency (COD) models the level of
punctuality below which partial parallel development of sys-

tems is not acceptable, and the dependency between systems
become analogous to PERT networks, where a task needs to
be fully completed before following tasks can begin. Figure
4 shows the model of developmental dependency between
two systems. The algorithm is used to evaluate the impact
of delays in the development of individual systems on the
schedule of the whole SoS. A stochastic model, based for
example on Technology Readiness Level (TRL), can be used
to evaluate uncertainty on the schedule and the most critical
technologies to be developed early in order to guarantee
timely completion of the SoS development.

Impact of SOD and COD on development time (SODij= 0.25, CODij= 30)
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Figure 4. Completion time of system i and beginning time
of system j in function of the parameters of the
developmental dependency between the two systems. Due to
partial dependency, system j can begin its development
before completion of system i, unless i is critically late.

3. ARTIFICIAL INTELLIGENCE AGENTS
NASA Technology Roadmaps and Al Agents

The requirements for research support for the AWB tools
demanded a new approach. To ensure the quality of the
research collected, we focused on content curated by NASA
and stored in the NASA Technical Reports Server (NTRS)
repository. Traditional Boolean search relies heavily on
keywords and the accuracy of tagging provided by the author
of the articles. This approach leads to results that miss articles
that are incorrectly tagged or that containing relevant data but
were published against an unrelated primary topic. Boolean
results are also binary in that a relevant article that does not
contain the right keyword is completely missed and there is
no approach that enables the researcher to be confident they
have found all the relevant articles. This problem is especially
acute for space research, as many of the topics have not been
fully discovered/invented yet and hence do not have a known
keyword for searches. Similarly, engineering terms evolve
and today’s researcher may not be aware of previously used
terms that would lead to relevant articles. Boolean search
relies on the user to have prior knowledge of key terms to use
to initiate a search. For research on a low TRL technology,
the solution may not be mature enough to have a keyword or
the keyword may be difficult to find. For a rapidly evolving
technology, the keywords used in earlier research may be
obsolete rendering that tagging marginally useful. Addition-
ally, the best search may be the result of a combination or
pattern of relatively common terms. While repeated guessing
at search terms and combinations can be time consuming, our
approach builds a search agent automatically from multiple
examples, doing the work for the researcher and accelerating
the process.



To solve this problem, we developed a new approach to
building an enriched database of space architectures, at the
core of which is a new Al technology for topic discovery.
These Al topic agents, originally developed by ai-one inc,
were used along with document metadata and entity extrac-
tion to classify over 60,000 research papers in the NTRS
repository. The agents trained for this project were based
on the 354 Technology Area Breakdown Structure (TABS)
agents from earlier work. Trained directly from the NASA
2015 Technology Roadmaps [19], they were consistent with
NASA’s existing ontology.

For this project, Purdue and other teams submitted descrip-
tions, grouped by system, of each subsystem in their architec-
ture. The descriptions included a paragraph of text, possible
keywords, and reference sections to TABS if available. The
initial inputs from the Purdue team for the habitat portion of
NASA Lunar Gateway consisted of 27 subsystems grouped
into 10 systems. An Al agent was created for each, which
was then used to deliver a set of relevant articles for that
subsystem.

Agent Training Process

We chose not to use unsupervised machine learning to pro-
vide the user with control over an intuitive flexible tool that
once trained would deliver consistent results as part of the
processing pipeline. The supervised learning process used
for this Agent training consisted of supplying the agent with
keywords, descriptions of each subsystem and samples of the
topic from the NASA content, including sentences as well
as paragraphs. Once deployed, each of the agents analyzes
millions of paragraphs in the 60,000 papers and returns a
similarity score for each, depending on how closely the
paragraph reflects the topic. The technology used abstracts or
generalizes the concept being scored from the samples, words
and their patterns in language. Specifically, this technology
is focused on the detection of concepts, topics or themes at
the paragraph and/or sentence level as a means to accurately
define the context(s) of the text before performing more spe-
cific analyses such as sentiment, grammar, entity extraction,
etc. The technology for concept detection is a derivative from
work in neural networks, Natural Language Programming
(NLP) and computational linguistics. In training, the agents
learn words and patterns, stored as an array that indicate the
concept or topic. The agent training process also allows the
user to boost the score if any of a list of specific unambiguous
keywords or regex expressions are found in the text. These
additional word patterns can pick up topics that would have
otherwise been missed with a Boolean search method. Agents
are tested and retrained periodically to accommodate rele-
vant new terms and language patterns as language evolves,
especially important in the fast evolving and state-of-the-art
space domain. The array for an agent is then compared with
the paragraph arrays in each paper and scored for similarity.
The use of a normalized similarity score instead of a binary
classifier provides a resulting system which is more flexible
across large variances in language. Our technology generates
a similarity score from the comparison of an agent array
with the array built for each paragraph of target text. In
our application the cutoff value is a parameter adjustable
by the user through an interactive graphical user interface.
Our research has found concepts or topics most accurately
expressed at the paragraph level. A hit for a document can
come from the highest single paragraph score or aggregating
the similarity scores for all the paragraphs in the document.
Ranking is also adjusted through the use of extracted entity
and document metadata. All of this is available to and can
be manipulated by the user. Additionally, our algorithms and

those used by other researchers can be incorporated into the
processing pipeline and those attributes added to the database
with each paragraph, so multiple attributes can be compared
and/or extended by our users or other researchers to provide
a superior tool for research. The similarity scores returned
by each agent for each paragraph are then consolidated into
a final classification of topics for a given paper. In addition
to the similarity score calculated by the agent, the user can
provide keywords or phrases that if present will boost the
overall similarity score. This additional boost can be set
from zero to 100%, resulting in an overall score maximum
of 2. In this particular study, the boost was set to 50% for all
agents, hence the similarity score ranges from O to 1.5. While
not used to optimize results in this case, the ability to adjust
these parameters allow the agents to score different types of
text (ex. News vs Research) and return similar relevancy
scores as perceived by the user. Critical to our approach is
the user’s ability to control all of these variables, yielding
transparent and repeatable results with no black box in the
background. The classification is accomplished by adjusting
the cutoff value for the consolidated similarity scores for a
paper. If the similarity score is greater than or equal to this
cutoff value, then the topic is deemed to be present in the
paper. If the similarity score is less than this cutoff value, then
the topic is not present in the paragraph/paper. We call this
feature the “almost” feature as the user, in combination with
other attributes (date, author, organization, etc), can lower the
cutoff to see more research or increase it to reduce the size
of corpus for research to be downloaded and reviewed. As
part of this process in creation/training of the classifiers for
each agent, the results of each agent have been tested against
a corpus and scored for relevancy, i.e. percentage of false
positives and false negatives. Figure 5 illustrates the phases
of the Al agents training process.

Potential expansion

The creation of these agent classifiers is a continuous, col-
laborative effort within the space engineering community to
build a complete set of research tools for all the possible space
architecture elements. As the collection of agents is built out,
engineers seeking research or updates to their research corpus
will be able to use the space architecture database to quickly
build and populate new models providing program managers
with a near real time tools for modeling different scenarios to
reduce risk to schedule, scope and cost.

4. CASE STUDY: THE NASA GATEWAY
HABITAT

Problem Description

The case study models and analyzes operational and develop-
mental dependencies between constituents of the habitation
module in the NASA cislunar Gateway. Functional and
systemic decomposition has been used both to identify the
systems and subsystems in the habitat architecture and to pro-
vide description of these components and their functionality
for the Al agents training. The team identified 10 systems and
27 subsystems, shown in figure 6. Figure 7 shows an example
of the documentation with the description of subsystems and
their functionality.

The objective of the problem is to use results from the Al
agents search to retrieve useful information that can be fed
into tools of the AWB for analysis of SoS features of the
habitat architecture. This process requires three steps:
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Figure 5. Phases of the Al agents training: implementation of database of abstracts; creation of agents; scoring of the
abstracts with agents; presentation of results in Business Intelligence dashboard.

| : :

! 1 ;

| Structure | |Mechanisms| | Power | | Thermal ‘ Avionics/ | Comm | ‘ ECLSS ‘ ‘ Robotics | Crew Science &
C&DH Systems Research
® i Crew Health
Primary IDSS-Compliant Eneioy Active c&DH |« [Elementto Atmosphere L] VA b Internal
Support Dogking/ Storage Control Element Management Robotics - M Science
- - 7 Diagnostics E ment
Micrometeroid Undocking — Comm < quip
Protection/ h
™ Power Passive Displays c Efvironment Imagery External
Hull < rew Monitoring Science
Distribution Control and
IVA/EVA Equipment
Grapple Controls irel Food
Fixtures/ | | Comm Water | _ | Preparation [*]
Robotic Management
IAccommodations| S:Dala Internal
ragel Waste Vehicle |«
Structural |«—| Lightin
Health |« Management ghting
Monitoring ; Radiation
Fire Safet itori
and
Mitigation

Figure 6. Systems (top row) and subsystems in the NASA Gateway Habitat.

System Subsystem Description

Main load-bearing structure of the spacecraft
such as beams and trusses that support the hull 1
and provide attachment points for other 1

systems in the spacecraft. 1

Primary Support
Structure

Outer surfaces and hull of the spacecraft that
form the barrier between the habitable
environment inside the spacecraft and the
outside space environment. The hull must
protect the crew from environmental hazards
like radiation and micrometeroid impacts. The
integrity of the hull is essential for maintianing 1
pressure and atmosphere in the spacecraft. 1
Fixtures on the outer surface of the habitat

that allow robots to grapple onto the module.
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Figure 7. The Al agents have been trained based on
description of the subsystems and their functionality.

o Training of the Al agents

« Utilization of the agents to identify relevant sources and
extraction of the necessary information

« Analysis of the habitat architecture with AWB tools.

Agent Training and Refinement

The AI agents described in section 3 have been trained using
the description of the subsystems provided by the team at
Purdue. Tested against the database, the agents have then
been refined producing more advanced versions of them.
During this process, experts have been queried to support the
boosting of specific concepts or keywords, in order to obtain
more focused results that can provide the best sources of
information to the AWB. Figure 8 shows some of the results
of the search performed by version 5 of the Al agent for
the Atmosphere Management subsystem. The spreadsheet
shows a summary of the information that the user can see
in the Business Intelligence dashboard. To improve the
agents, 20 literature sources have been evaluated by SMEs
for what concerns their relevance to the topic. Following this
evaluation, new versions of the agents have been produced
which boost or avoid specific keywords and concepts that
resulted in irrelevant sources.

During this process, some interesting results provided insight
into the capabilities of the Al agents to learn and to interpret
concepts. For example, the description for the Grapple Fix-
ture subsystem was written referring to handles that robotic
arms can use to dock to and move around the module. How-
ever, the Al agent identified sources that describe magnetic
mechanism for docking of satellites and robotic arms. These



sources are very relevant and match the concept of grappling
fixtures, however would have been easily overlooked by users
familiar only with handles as grappling fixtures.
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Figure 8. Spreadsheet showing part of the results of version
5 of the AI agent for Atmosphere Management. The
literature sources have been reviewed by Subject Matter
Experts, who indicated whether the source is relevant to the
topic or not.

Use of the agents to identify data sources

While the spreadsheet used to evaluate the relevance only
provides links to the sources, the dashboard yields more infor-
mation, including dates of publication, authors, and location
where the research was conducted. Furthermore, the user
can add filters to the set of sources, for example indicating
specific keywords. While the long term goal of this research
effort is to achieve as much automation of the process as
possible, the phase of extracting relevant information from
the sources found by the agents has been performed by SMEs.
In this phase, the use of filters proved very useful, especially
to identify modeling parameters for the SODA tool. Since
SODA models the operational dependencies between subsys-
tems, as well as the behavior of the whole architecture when
disruptions occur, refinement of the sources using keywords
such as “failure” have been used to quickly gather existing
information on failure modes and effect of disruptions in
subsystems of interest. The results have been integrated
with information by SMEs to build SODA models of the
subsystems of the Gateway habitat.

For what concerns SDDA, the model requires data about the
expected time required to complete the development of sys-
tems and technologies, and information about the uncertainty
of the expected time. In this case, the relevant features of
the Al agents is their training against the NTRS repository.
Through the AI agents dashboard, the user can retrieve in-
formation about the agent or agents which gave a relevant
score to specific sources. Since the agents are associated
with NASA TABS, this information relates each sources to
its pertaining areas in the TABS structure. Each item in
TABS, that is each technology or subsystem, is associated
to a current Technical Readiness Level (TRL) and to the TRL
required to support specific space missions. This information
has been used to build SDDA models of the subsystems
of the Gateway habitat. Figure 9 shows the developmental
dependencies between subsystems of the habitat, and Table 1
shows the associated TABS. The space architecture database
we are proposing to build based on the Al agents will support
this process of data retrieval.

Table 1. NASA TABS associated with the habitat

subsystems.
Subsystem TABS category
Primary Support Structure 12.1.1,12.2.6
Micrometeoroid Protection 12.1.4,12.2.5.2
Grapple Fixtures 4.3.7,12.3.3.1
Structural Health Monitoring 12233
IDSS-Compliant Docking 4.6.3
Energy Storage 3.2.1,12.1.5.3
Power Distribution 3.3.1,3.3.5
Passive Thermal Control 12.1.4.5
Active Thermal Control 14.2.1,14.2.2
Command and Data Handling 11.1.1
Crew Displays and Controls 6.34.1,11.4.7
Data Storage 11.1.1.2

Element to Element Communi- 53

cation

Crew IVA/EVA Wireless Com- 59
munication ’
Atmosphere Management 6.1.1,6.4.4.1
Environmental Monitoring 6.4.1

Water Management 6.1.2

Waste Management 6.1.3

Fire Safety 6.4.2,64.43
IVA Robotics 43.1,43.2,6.34.7
Crew Health and Diagnostics 6.3

Imagery 4.1

Food Preparation 6.1.4.9,6.1.4.10

Internal Vehicle Lighting 6.3.33

Radiation Monitoring and Miti- | 6.5.1, 6.5.3, 6.5.4,
gation 12.1.4.4

Internal Science and Research 8.1,8.3

External Science and Research 8.1,8.3

Analysis

The SODA and SDDA models of the habitat, built with the
support of the Al agents, have been used to perform different
types of analysis aimed at identifying the most critical subsys-
tems and technologies. In the operational domain (SODA),
these are the elements that have the highest impact on the
whole habitat SoS when disruptions occur. The large amount
of information about impact of disruptions accounting for the
dependencies between systems can be summarized in a Dis-
ruption Impact Matrix (DIM). This matrix shows disrupted
subsystems in the rows, with a level of disruption that can
be modified by the user. The columns show the impacted
subsystems, and the colors in the cell represent the status of
the impacted subsystems given the disruption in the failed
subsystem. Green is nominal status, yellow is sub-nominal
status, and red is disrupted status. Figure 10 shows the DIM
for the habitat subsystems. Fire safety, primary structure,
MMOD, and power distribution appear to be the most critical
subsystems in the operational domain. The user can then
obtain more details by studying individual disruptions. More
detailed results about SODA analysis of the Gateway habitat
can be found in [8].

SDDA analysis focuses on the impact that delays in indi-
vidual subsystems have on the development schedule of the
whole habitat. The results are shown in form of Gantt charts,
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which show the partial parallel development of the subsys-
tems. SDDA has the capability to automatically reschedule
the development times based on the dependencies and on the
delays, with large delays causing less parallel development,
to represent the lower reliability associated with the delayed
development.

Figure 11 shows the Gantt chart for the development and
assembly of the Gateway habitat resulting from SDDA anal-
ysis in the nominal case, and the same schedule resulting
from a version of SDDA that implements more conservative
decision making for what concerns the execution of tasks (the
conservative approach results in later completion of the entire



project, but avoids potential waste of resources due to early
beginning of tasks that cannot be completed early because of
delays in other tasks).
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To evaluate the impact of delays in individual subsystems on
the overall schedule, we performed SDDA analysis where
one system at a time has a delay equal to 50% its maximum
expected delays. SDDA model quantifies the propagation of
this delay to other subsystems, and we assessed the final delay
on the completion of the whole SoS development. Figure 12
shows the results of this analysis. The empty rectangles rep-
resent the initial delay in the disrupted subsystem, while the
colored bars show the final delay in the overall development.
Since the model allows for partial parallel development, some
of the delays can be totally or partially absorbed. Some
initial delays, however, cause an even longer delay on the
entire schedule. In the SDDA mode, the Primary Support
Structure, the MMOD Protection, and the Power Distribution
are the most critical elements, while delays in all of the other
subsystems are fully or partially absorbed. The conservative
model tends to avoid early initiation of tasks, in order to
prevent potential waste of resources, and is therefore less
capable of absorbing delays.

A complete analysis of delays requires to run multiple sce-
narios, including different amount of delays in various sets of
subsystems. However, we can account for the large amount
of uncertainty in complex systems, which are common in
the space domain. For this purpose, we applied a stochastic
version of SDDA, where the TRL provided by the Al agents
was used to evaluate different amount of uncertainty in the
expected time required to develop each subsystems. This
uncertainty is propagated along the network according to the
SDDA model, and the result is a stochastic Gantt chart, where

the schedule shows the uncertainty in the completion time of
the subsystems development, and suggests appropriate times
to begin the development of each subsystem. Figure 13
shows the result of this analysis. Due to the initial low TRL
of some of the involved technologies, the schedule presents
initially large uncertainty. However, the analysis can be run
again at later times, based on information collected during the
development process itself. The right side of figure 13 shows
the schedule resulting from SDDA analysis performed after 6
years, with a consequent reduction in the uncertainty.

5. CONCLUSIONS AND FUTURE WORK

This work illustrated an application of Artificial Intelligence
to create a preliminary space architecture database and to
retrieve useful sources of data used to feed a set of SoS tools.
The tools of the Analytic Work Bench provide analysis of the
impact of dependencies between systems in the operational
and in the developmental domain. Al agents were trained and
used to identify useful sources for the parameters and inputs
of the models used by the tools of the AWB. Methodological
advancements and results include:

o Implementation and Training of Al agents capable of inter-
preting natural language descriptions. The agents use a score
rather than a simple binary evaluation of keywords and can
therefore use concepts and give a more detail assessment of
the relevance of literature sources to topics of interest.

o Refinement of the agents through evaluation against exist-
ing repositories and interaction with Subject Matter Experts
to improve the definitions and boost specific keywords and
concepts within the agents.

« Use of filters on the sources identified by each agent pro-
vided information about disruptions and failures of specific
subsystems. This data have been integrated with information
from the Subject Matter Experts to build a SODA model of
the NASA Gateway Habitat.

o Use of information about the agents related to a specific
subsystems in order to sort each subsystem into categories in
NASA TABS. These categories provide current and necessary
Technology Readiness Level and development time, which
have been used to build an SDDA model of the NASA
Gateway Habitat.

e SODA analysis indicates that Fire Safety, Primary Sup-
port Structure, MMOD Protection, Power Distribution, and
Avionics are the most critical elements in the operational
domain, that is the subsystems which cause the highest
cascading impact on other subsystems when disrupted. High
criticality suggests technologies that might require enhance-
ment or insertion to guarantee their robustness.

o SDDA analysis indicates that Structure, MMOD Protec-
tion, Power Distribution, and ECLSS subsystems are critical
in the developmental domain. This criticality means that
delays in the development of these subsystems and their
associated technologies can cause the highest delays in the
development of the whole habitat. High criticality suggests
tasks that might require more attention, whether that means
earlier initiation or higher resource investment.

Since the proposed methodology is constantly evolving and
being improved based on user needs, we identified promising
future directions of research. First, since the modeling phase
can be time-consuming and still involve a large number of
sources, we advocate the implementation of a space architec-
ture database and the use of large amount of autonomy and
Machine Learning, to support the humans-in-the-loop during
the modeling phase.
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Effort is currently underway to apply this to missions being
planned by other university and NASA teams, including the
Gateway Habitat program. In addition to developing a set of
agents for those subsystems, our roadmap includes expansion
of the space architecture database to JANNAF, AIAA, space
news sources and other credible resources needed by the SoS
engineer. Furthermore, we propose the development of a web
platform with the SODA and SDDA AWB tools integrated
and available across NASA.

Finally, at the time of this publication NASA released a new
structure for the technology roadmap, called the NASA 2020
Technology Taxonomy. Our goal is to train the agents against
the new taxonomy, as well as to identify common traits with
the objectives indicated in NASA’s Decadal Survey, to bridge
the gap between technological and scientific approach.
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